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Energy Loss of Ions by Collisions with
Magnetized Electrons

G. Zwicknagel* and C. Toepffer*

*Institut fUr Theoretische Physik, Universitdt Erlangen-Niirnberg,
Staudtstr. 7, D - 91058 Erlangen, Germany

Abstract. The interaction of ions with electrons in the presence of an external magnetic field is
a basic process for the description of the transport properties of a magnetized plasma, as e.g. the
energy loss of ions to the superimposed electron beam in the electron cooler of a storage ring. But
a comprehensive description of binary collisions of ions and electrons in the presence an external
magnetic field has still to be established. Here, we recently achieved some progress by calculating
the energy transfer in binary ion-electron collisions both by fully numerical classical-trajectory-
Monte-Carlo (CTMC) simulations and by perturbation theory. These two techniques and some first
results are presented and discussed, in particular the strong dependencies of the energy loss on the
direction of the ion motion with respect to the magnetic field and on the anisotropy of the velocity
distribution of the electrons.

INTRODUCTION

One fundamental process for the description of the transport properties of a magnetized
plasma is the interaction of ions and electrons in the presence of an external magnetic
field. Prominent examples are the resulting cooling of ions by a surrounding electron
plasma in a trap or by the energy loss of the ions to the superimposed electron beam
in the electron cooler of a storage ring. Although electron cooling in a storage ring is
a well established method, a lot of observations are not yet satisfactorily explained and
understood. Here, an improvement of the theoretical understanding has to start with the
energy loss of a highly charged heavy ion in a magnetized anisotropic electron plasma,
which is the fundamental process in the electron cooler. Whereas the energy loss of ions
in unmagnetized electron plasmas has already been studied extensively [1], a qualified
and comprehensive description of the interaction of ions with magnetized electrons is
still an open problem and a rather formidable task. The presence of a magnetic field
considerably complicates the description of the energy loss mainly because of the loss
of symmetries as compared to the case of an isotropic nonmagnetized electron plasma.

At weak coupling between the ion and the magnetized electrons a linear response
description of the energy loss is applicable, where the energy loss is given in a closed
from in terms of the dielectric function, see e.g. [1, 2]. The appropriate dielectric func-
tion which describes the response of an ideal plasma of magnetized electrons with an
anisotropic velocity distribution can be derived analytically and is given in most text-
books on plasma physics, e.g. in [3]. Its rather complex structure implies, however, a
very intricate numerical evaluation of the final expression for the energy loss. Such a
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numerical analysis is in progress [4] and an important subject for an advanced under-
standing of the stopping power at these conditions.

Also the description of the energy loss as a result of subsequent binary ion-electron
collisions is strongly complicated by the presence of a magnetic field as compared
to the nonmagnetic case where the energy transfer in a collision is a function only
of the relative velocity. With magnetic field, additional dependencies show up and
the ion-electron motion no more separates in a center-of-mass and relative part, in
general. This makes even binary ion-electron collisions to a rather exhausting and
challenging problem. Thus the energy loss is typically treated on an approximative level
only. Starting with the expression for the energy loss by nonmagnetized ion-electron
collisions, the influence of the magnetic field enters only through certain cutoffs which
divide the possible impact parameters into several classes corresponding to slow and
fast and/or nonmagnetized and magnetized collisions. For each of these cases a separate
contribution to the energy loss with a specific Coulomb logarithm is formulated, see
e.g. [5] for details. More accurate descriptions of the energy loss have to start with a
detailed treatment of ion-electron collisions in a magnetic field. Here we discuss two
different approaches for the determination of the energy transfer in this type of binary
collisions; first a fully numerical classical-trajectory-Monte-Carlo (CTMC) scheme and,
additionally, a perturbation treatment up to 2nd order in the ion-electron interaction.

ION-ELECTRON COLLISIONS IN A MAGNETIC FIELD

We consider the interaction between an ion (mass M, charge Ze, position R, velocity
V = R) and an electron (m, -e, re, Ve = te) in a static, homogeneous magnetic field
B (and a vector potential A = c(B x r)/2) in framework of classical mechanics. This is
specified by the Lagrangian L

L "2V+'2m MV2 e 2Ze(BR)V-(rRI) (I)L = _e - _(Bxre)'Ve+-(x•--DJr-J) 1
2e 2 2 2

Because the two-body interaction FD(re,R) = 4(Ire - RI) depends only on the relative
distance, we next perform a transformation to the cms (Rc,,?, Vcm,) and relative the frame
(rr,vr), defined through R, = (rire+MR)/(m+M), Vc, = (mv,+MV)/(mn+M),
and rr = re - R, Vr = Ve - V. In these coordinates, the Lagrangian (1) takes then the
form

m_2+ M 2 _-12 - D(rr) + (Ze - e).L - rn~V 2  -Fr) + - "(B XRcnz)"Vc,n (2)
2 f2 2 ~ 2

+p2(Ze_ e ) (B xrr)'-Vr ( Ze+ e.( c, r+ Bxr)-Vn
+ 2•Z- e (2 r -- t--+m) {(B×Rc,n)'Vr+(Bxrr)'VcM},

where p is the reduced mass p- M-1 +n- 1 . The resulting equations of motions in
the cms and relative frame are:
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d (m+M)Vcm = (Ze-e)(VcmXB)-p(-±M +e)(vr x B) (3)
dt M M

d 2 "Ze e Ze e

dt PVr = 12 (P-2 j )(Vr x B) -p(- +M )(Vcm x B) - V(D(rr)

Expressions (2) and (3) already offer very useful insight in the complications which
here appear compared to the case without a magnetic field. In the nonmagnetic case
only the first terms of the Lagrangian (2) are present and the motion separates in a
cm- and a relative part in the usual way. But with magnetic field the cms motion is
coupled to the relative motion, as given by the last term of L (2) and the corresponding
terms in Eqs.(3), and the cm-velocity Vcm is not conserved. While the total energy
E, that is, the Hamiltonian H = (m + M)V2m/2 + ±PV2/2 + 4(rr) = E = Ecm + Er, is
a constant of motion (dH/dt = 0), the cm-energy Ec, = (m + M)Vlm/2 and the relative
energy Er = PVr/2 + (D(rr) are not conserved separately and the problem cannot be
reduced to three relevant degrees of freedom, in general. This is, however, possible
for electron-electron collisions, which are of great interest as well when discussing
transport properties of a magnetized plasma. Setting formally Z = -1 ,M = m,p = m/2,
the prefactor of the coupling term in Eq. (2) cancels and the Lagrangian takes the form
Lee = 4,n(Von,Rcm)+ 4-(Vr,rr). This possible reduction to a much simpler system
makes a very important difference between ion-electron collisions and electron-electron
collisions in a magnetic field.

As M >> m,p -+ m and for cases where the cyclotron period of the ion is large com-
pared to the collision time, we may also consider a simpler problem by calculating the
energy transfer in an ion-electron collision under the assumption that the ion velocity is
constant up to terms O(m/M), i.e. V = const + O(m/M). Neglecting terms of O(m/M),
the cm-velocity Vcm = V + O(m/M) remains constant as well, whereas the time evolu-
tion of the cm-energy

dEcm d *m)
dt Vcm'-(m+M)Vcm - eV.(vrxB) + O( (4)

is still coupled to the relative motion, which is now determined by

d
dmvr = -V(D(rr) - e(vrxlB) - e(VxB) + O0 . (5)

There exists, up to terms O(m/M), the conserved quantity

K = + D(rr) + e (V x B). rr (6)

which replaces the total energy as a constant of motion in the limit M > m. The magnetic
term in K is here associated with the non-conservation of Ecm, Eq. (4).
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ENERGY TRANSFER AND ENERGY LOSS

To calculate the energy loss of an ion in a magnetized electron plasma we have first
to determine the energy transfer to the ion AEM = M(V-2 _ V2 )/2 from the velocities
V'r, V'o, after a binary ion-electron collision with given initial velocities Vr, V,,,, (and
positions rr, Rc,), where V = Vn- p/Mvr and V' = Von'-p/Mvr'. In the limit
M > m, the energy change dEM/dt = MV. dV/dt during the collision is in leading
order given by dEM/dt = MVc,' dVcm/dt + mV. dvr/dt. This results, using Eqs. (4) -
(6), in an energy transfer

AEM = e (V x B). (rr'- rr) - mV. (v/- Vr) = (Vr2 - v2) -mV.(Vr'-Vr). (7)2 r

The required final velocity Vr' is now calculated both within a fully numerical approach
and by perturbation theory.

The fully numerical evaluation of the energy loss is based on a classical-trajectory-
Monte-Carlo (CTMC) like treatment. Here the relevant equations of motion, see Eq. (5),

dvr [ Ze2  p r)1 drr
dt -V - exp(- - e(vrxB) - e(VxB) , - vr, (8)

47tEorr dt

are integrated numerically for a given set of initial conditions using a modified Velocity-
Verlet algorithm which has been specifically designed for particle propagations in a
(strong) magnetic field. It is described in detail in Ref. [6]. The ion-electron interaction
(P is modeled by a Yukawa type screened Coulomb interaction with a screening length
X, which here represents an additional external parameter. The numerical integration
starts, for cases with r, < X, at an ion-electron distance rr of several X and stops when r,.
exceeds this distance again after the collision. If the cyclotron radius r, of the electron
exceeds X., this distance is enlarged by re. To achieve the required accuracy the constant
of motion K (6) is monitored and the actual time-step is adapted continuously. The
resulting relative deviations of K are of the order of 10-6... 10- 5 . The initial conditions
are, besides the fixed, constant ion velocity V, the relative velocity Vr, a phase (P of
the helical motion of the electron in the magnetic field and the position rr. This initial
position is related to an impact parameter b which lies in a plane perpendicular to the
initial velocity of the guiding center in the relative frame gr(t = 0) = -VYe, + v,.. e,
where we assumed B = Be, and V = Vxe, + Vze,. See also Ref. [7] for more details. From
the changes of the relative velocity, Vr - vr', for a specific trajectory we then obtain the
energy transfer AEM(Vr, V, b, .p) as a function of the initial values Vr, V, b, p0. As the next
step, an averaging over the phases (9 and the impact parameters b is performed by a
Monte-Carlo sampling which results in the quantity

AEM(v,,-V)) = d2njY AEM (Vr, V, b, (p) (9)

The actual number of computed trajectories needed for (AEM) is adjusted by monitoring
the convergence of the averaging procedure. Typically, around 105 trajectories are re-
quired for one set of parameters v, V, B. To finally obtain the energy loss, i.e. the energy
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change of the ion per unit path length, the averaged energy transfer (AEM) is multiplied
with the flux density of electrons nigri, which is directed parallel to the normal vector of
the area element d2 b, and integrated over the electron distribution, that is,

dE_ 1dE n d3vef(Ve)Igr Id2b AEM(Vr,V,b, (p) (10)
ds V dt V fI J 1

The energy loss dE/ds (10) basically represents the energy change per time dE/dt
as an average over the number of collisions per time and the energy transfer per collision.

In the second approach the velocity transfer AVr Vr - Vr is calculated in a 2nd-order
perturbation treatment of the relative motion

dvr -V[- Ze2 I- e(vrxB) e(VxB) d, r, (11)mdt [47ccorrJ d---t v' (1

using the bare Coulomb interaction D =- -Ze 2/4itsorr. The approximate solution starts
with the analytically given trajectory ro(t), vo(t) = to(t) for the unperturbed electron
motion, i.e. (D = 0 and

dv0 .,
m-y- + e(vo x B) = -e(V x B).

Using the trajectory ro(t) for calculating the force between ion and electron, a 1st-order

correction rl,vi with

dvl dr,
m- +e(vi x B) = -V4(r)Irr=0, -0-dt=V

provides the velocity transfer 5v =- V' - V, which is O(Z). In the next step a O(Z 2 )
velocity transfer 8(2)V = V2 / - V2 is obtained from a 2nd-order correction to the unper-
turbed motion by taking into account the additional force due the 1st-order displacement
of the trajectory rl. Here

dv2m-dt + e(v2 × B) = -1V4)(r)lr~ro-r, -Vc(r)Ir=ro ],

where the parenthesized force term is expanded up to contributions linear in r].

Three regimes for the velocity transfer can be distinguished:

(i) The Coulomb field is dominant when the cyclotron radius r, of the electrons is
larger than the distance of closest approach bo. Then, for an initial velocity Vr,

8v-- Ze 2  2 (_ Ze2 2

41tmom vrb2 4o (2)vv42-

(ii) For the case of a large magnetic field with rc < bo the transversal motion of the
electron is quenched and there remains only the relative motion with respect to the
guiding center, g, = -Vxex + Vr" ez.
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(a) If the pitch 6 is larger than bo the helix is stretched and there apply the same
expressions (12) with vr --+ g,.

(b) Most interesting is the case of tight helices, where 8 < b0 . Here remains only
a velocity transfer parallel to the magnetic field B = Bee,

5v-- Ze 2 2Vxcos(xV) 8(2)v = _ e ze 2 )2 2V g,.ez
4t 2rbo ez 47tom) 6 b2  ez (13)
4it 0nz grbgr o

provided that the ion has a velocity component V, perpendicular to the mag-
netic field.

The energy loss of the ion is now obtained by integrating the energy transfer AEN! (7)
first over an area element i'rbodbody4 parallel to the relative current density nVr and then
over the velocity distribution f(Ve), i.e.

dEds I dE = n d3Vf(V) V r 2 bjdbo (AEM). (14)

ds V dt dVef(Ve)i

In the y-averaged energy transfer (AEM)v all terms O(Z) vanish because of symmetry
and up to O(Z 2 ) we have

(AEM) = -rnV. (8(2 ).v)y _ - (-2v,*(8(2)V) + W±((5V)2) Y). (15)

The b0 integration exceeds from b,,,in - Ze2/4itcomnV2 to the screening length b,,,.v =

.. Hard collisions are taken into account by regularizing the emerging bo-integrals
a-+ b0ain). This procedure yields the exact result

for the bare Coulomb case.

RESULTS

A comprehensive analysis of the energy loss of ion-electron collisions in a magnetic
field is still in progress. For our current calculations we have been mainly interested in
the specific situation in the electron cooler at the TSR storage ring at Heidelberg [8] and
thus concentrated on the corresponding parameters, that is, an ion charge state Z = 6,
an electron density n - 8 x 106 cm- 3 , magnetic field strengths around B = 0.01 T and
an anisotropic velocity distribution f(ve) of the electrons. It is modeled as a product of
two Maxwell distributions for the parallel and the transversal degrees of freedom (with
respect to B), i.e.

i 2Mks Tm -1 / 2 m 2 ,n V 2

f(Ve) = f vn,(m") = exp(- mvi ) exp(- -mT2 ) (16)

with temperatures kBTL = 11.5 meV, kBTII = 0.1 meV, an anisotropy T7/7TI = 115 and re-

spective thermal velocities Vth,± = (kBTu/m)'/ 2 = 4.5 x 104 m/s, Vth,11 = (k 1Tj1/m) 1/2 -
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4.2 x 10 3 m/s, i.e. VthI_/Vthll = 10.7 and screening lengths XD,.L = (FokBTLI/e2 n)1/ 2 =

2.8 X 10-4 m, XD,II = (EokBTIj/e 2n)l/ 2 = 2.6 x 10-' m. Some examples for the energy

loss dE/ds as obtained from the CTMC procedure, Eqs. (8)-(10), and the 2nd-order
perturbation treatment, Eqs. (11)-(15), are shown in Figs. 1 and 2 as function of the ion
velocity V in units of Vth,II; in Fig. 1 for a magnetic field B = 10 mT and different di-
rections a= 0',30',60' and 900 of the ion motion, and in Fig. 2 for cc = 00,600 and
various B 2.5 mT, 10 mT and 40 mT, where cos() = B . V/BV. These results are
compared with the energy loss of an ion in an anisotropic electron plasma without mag-
netic field (B = 0), where the equations of motion (8) can be solved analytically and the

0.02- 0.06-H CTMC
......0--.o 2nd order

*---. B=O .4 =

i 0.01-" 0.02-

0.00
cc = 300°

0.00 -0.02-
0 5 10 is 20 0 5 10 15 20

V / Vth,11  V Vth,11

0.09 0.09 .

CTMC - CTMC

0.06- .o 2nd order 0.06- o. 2nd orderi "-,B=O -- B=O

WL 0.03 0.03

0.00 .. .. 0.00 --- -- --- -

(x 600 a = 900

-0.03 -0.030 5 10 15 20 0 5 10 15 20

V / Vih,11  V / Vth,11

FIGURE 1. Energy loss dE/ds scaled in units of 47tn(Ze2 /47t10) 2 /mv2hII as function of the ion velocity

V in units of vth,jI = 4.2 x 103 m/s and for different directions of the ion motion ot = 0", 30", 60" and 90".
Results for B = 10 mT as obtained from the CTMC method and the 2nd-order perturbation treatment
are compared with the respective energy loss without magnetic field (B = 0) [1]. In all cases, the used
screening length is X = I X 10-4 m and TL/T11 = 115.
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energy loss (10) is thus given in closed from [1]. In all cases dE/ds is scaled in units of
4ntn(Ze2/47tEo) 2 /nmvh,1, which equals 0.75 eV/cm for the given parameters.

For an ion motion along the magnetic field, i.e. ox = 0', a significant suppression
of the energy loss compared to the nonmagnetized case occurs, which increases with
increasing magnetic field. This feature has also been found in a perturbative treatment
of the equivalent case of an ion at rest [9] and for the closely related equilibration
of the transversal and longitudinal temperatures in a magnetized electron plasma by
electron-electron collisions [10). In all these case the cm-energy Ecm is conserved and
a complete separation in cms and relative motion is possible, in contrast to the case

0.2-5 0.25

0.2 o-. B = 45g 0 B-.5 lmT

B o= 40 mT o B,40m T
0.15 01

/ CTM O,•a2nd order, = 0'

0 5 10 15 20 0 5 10 15 20

V / Vh,)1 V / Vt,

0.12 0.12-

• -',B =0 B, -B0

0.08 -. B= 2.5 mT 0.08- B 2.5 mT
,'P• •B=10 mT R B= 10 mT

40- B40 mT B-- =40 mT

'CW 004 LI 004

0 .00 ---- ---- ---- - • " • -•- m •-- -- - -- 0 .0 0 - - - - - - - - - - - - - - - - -000

-4 CTMC, a = 600 2nd order, a = 60"
-0.04 • ~ ~~~~~-0.04 . . ., . . , . . ., . .

0 5 10 15 20 0 5 10 15 20

V / Vth,11  V / Vh,11

FIGURE 2. Energy loss dE/ds scaled in units of 4ltn(Ze2 /4rcc0) 2 /mv,2h, i as function of the ion velocity

V in units of vth,II = 4.2 x 103 mis. Shown are results of the CTMC method (left) and the 2nd-order
perturbation treatment (right) for different magnetic field strength B = 2.5 mT, 10 mT and 40 mT and the
two directions a = 0" (top) and 600 (bottom) together with the analytically obtained dElds for B = 0.
The screening length is again X = 1 x 10-4 m and T±/IT, = 115.
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with a transversal component of the ion motion, that is, (x :/ 00. Here the presence of
a magnetic field causes a strong enhancement of the energy loss at low ion velocities
which increases with B. For even lower velocities V < vth,II and ccX- 0' we observe
negative values of the energy loss which correspond to an energy gain and thus an
acceleration of the ion. Both features, the strong enhancement and the negative values,
are related to the nonequilibrium situation of a highly anisotropic velocity distribution.
This can be concluded from calculations of the energy loss for a much lower anisotropy
of T1 /1Ti = 4, as presented in Fig. 3. Here almost no negative values of the energy loss
appear and only rather small enhancements can be found at large angles aX and very low
velocities. In general a reduction of the energy loss compared to the nonmagnetized case

.- 20 CTMC 0----O CTMC

0.15 o-.-o 2nd order 0.15 o..... 2nd order

0-....-B=0 13----- -=0

-0,05 

-0.05

0.050x=0 

0.05

-0.50 . . . . . . . . . .
5 1 0 15 20 0"0 4 . . 5 . . . . .10 15 . . 20

V VtI h1V / Vth,11

0.20 0.20

-. CTMC 
C- TMC

0.15 o*-*.... 2nd order 0.15 ...... 2nd order

1.3=0- B

ULU

:20.100 f----0.100o =t 600 .X --
go

0.05 0.05

-0.05 

-0.00

-.50 5 10 1'5 20 - 0,0 5 10 15 20

V / Vhi 1  v / Vth5 1i

FIGURE 3. Energy loss dE/ds scaled in units of 4ntn(Ze2 /4ito)2 /mv~ I as function of the ion velocity

V in units of vth,iI = 1.2 x 104 m/s and for different directions of the ion motion a = 00, 30', 600 and 900.
Results for B = 50 mT as obtained from the CTMC method and the 2nd-order perturbation treatment

Ti / T1 = 4.
are compared with the energy loss for B = 0 [1]. The used screening length is X = 2.5 x 10-5 m and
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is observed, which is strongest at a = 0' but only very weak at a = 900. Compared to
the CTMC results, the 2nd-order perturbation treatment here predicts a much stronger
reduction of dElds and much bigger negative values. It reproduces, however, very well
the essential general features of the energy loss by magnetized ion-electron collisions as
found by the CTMC method, in particular, in the previous case of the highly anisotropic
electron distribution.

OBSERVATIONS AND CONCLUSIONS

The presented results for the energy loss by ion-electron collisions in a magnetic field,
as obtained from both a fully numerical investigation and a 2nd-order perturbation treat-
ment, give an impression of the characteristic and important effects. One essential obser-
vation is the strong directional dependence with respect to B, i.e. on c, in particular for a
highly anisotropic electron distribution with T±/T 1 >» 1. This situation is characterized
by a strong reduction of dE/ds with increasing B for a = 0, a substantial enhancement
of dE/ds with increasing B for a 5$ 0, and an energy gain of the ion at v < V,,, at
variance with the case of vanishing anisotropy, TL/7T1 ,- 1. There we found an overall
reduction of dElds which increases with B and decreases with a. But in all cases, the
magnetic field significantly affects the energy loss only at low ion velocities V. These
features and the results of the CTMC calculations are generally well reproduced by the
outlined 2nd-order perturbation treatment. In a further step, after an additional averaging
over the distribution of the ion velocities, the obtained results will be compared to the
experimentally measured cooling forces [8]. This work is in progress.
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